

16K x 4 Static RAM

Features

High speed

—15 ns

- Output enable (OE) feature (CY7C166)
- CMOS for optimum speed/power
- Low active power

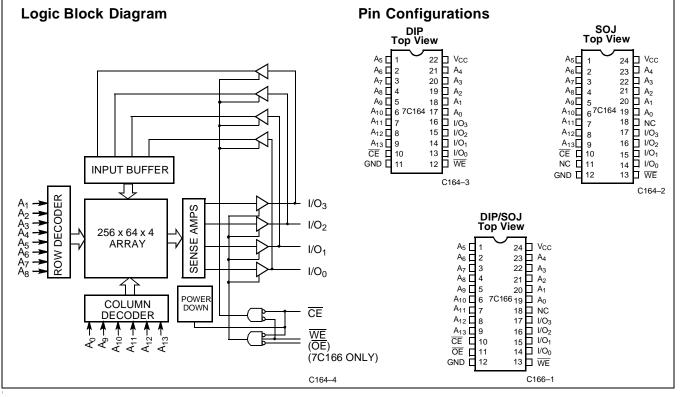
—633 mW

· Low standby power

—110 mW

- TTL-compatible inputs and outputs
- · Automatic power-down when deselected

Functional Description


The CY7C164 and CY7C166 are high-performance CMOS static RAMs organized as 16,384 by 4 bits. Easy memory expansion is provided by an active LOW Chip Enable (\overline{CE}) and

three-state drivers. The CY7C166 has an active LOW Output Enable (\overline{OE}) feature. Both devices have an automatic powerdown feature, reducing the power consumption by 65% when deselected.

Writing to the device is accomplished when the Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs are both LOW (and the Output Enable (\overline{OE}) is LOW for the CY7C166). Data on the four input/output pins $(I/O_0 \text{ through } I/O_3)$ is written into the memory location specified on the address pins $(A_0 \text{ through } A_{13})$.

Reading the device is accomplished by taking Chip Enable (\overline{CE}) LOW (and \overline{OE} LOW for CY7C166), while Write Enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.

The I/O pins stay in a high-impedance state when Chip Enable (\overline{CE}) is HIGH (or Output Enable (\overline{OE}) is HIGH for CY7C166). A die coat is used to insure alpha immunity.

Selection Guide

	7C164-15 7C166-15	7C164-20 7C166-20	7C164-25 7C166-25	7C164-35 7C166-35
Maximum Access Time (ns)	15	20	25	35
Maximum Operating Current (mA)	115	115	105	105
Maximum Standby Current (mA)	20	20	20	20

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C	
Ambient Temperature with Power Applied55°C to +125°C	
Supply Voltage to Ground Potential0.5V to +7.0V	
DC Voltage Applied to Outputs in High Z State ^[1]	
DC Input Voltage ^[1] 0.5V to +7.0V	

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage	>2001V
(per MIL-STD-883, Method 3015)	
Latch-Up Current	>200 mA

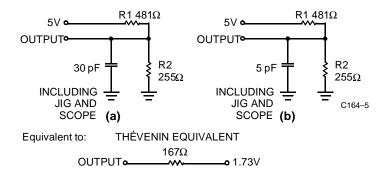
Operating Range

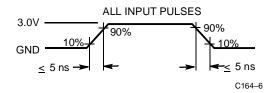
Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%

Electrical Characteristics Over the Operating Range

				7C164-15 7C166-15		7C164-20 7C166-20		7C164-25, 35 7C166-25, 35	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min.,$ $I_{OH} = -4.0 \text{ mA}$	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min.,$ $I_{OL} = 8.0 \text{ mA}$		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC}	2.2	V _{CC}	2.2	V _{CC}	V
V _{IL}	Input LOW Voltage ^[1]		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$	-5	+5	-5	+5	-5	+5	μA
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC},$ Output Disabled	-5	+5	-5	+5	-5	+5	μΑ
I _{OS}	Output Short Circuit Current ^[2]	V _{CC} = Max., V _{OUT} = GND		-350		-350		-350	mA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max., I _{OUT} = 0 mA		115		115		105	mA
I _{SB1}	Automatic CE Power-Down Current ^[3]	Max. V _{CC} , <u>CE</u> ≥ V _{IH,} Min. Duty Cycle = 100%		40		40		20	mA
I _{SB2}	Automatic CE Power-Down Current ^[3]	$\label{eq:max_constraint} \begin{array}{l} \mbox{Max. V}_{CC}, \\ \hline CE \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \\ \mbox{or } V_{IN} \leq 0.3V \end{array}$		20		20		20	mA

Capacitance^[4]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	10	pF


Notes:

Minimum voltage is equal to -3.0V for pulse durations less than 30 ns. Not more than 1 output should <u>be</u> shorted at one time. Duration of the short circuit should not exceed 30 seconds. A pull-up resistor to V_{CC} on the CE input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given. Tested initially and after any design or process changes that may affect these parameters. 1. 2. 3. 4.

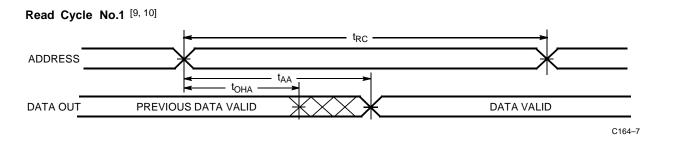
AC Test Loads and Waveforms

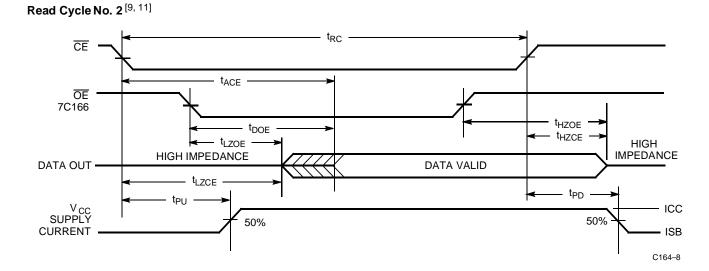
Switching Characteristics Over the Operating Range^[5]

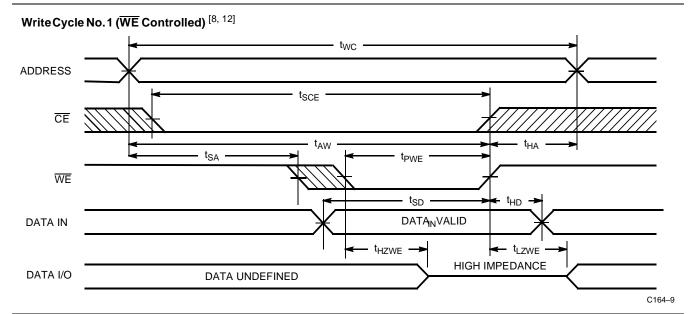
				64-15 66-15		64-20 66-20		64-25 66-25		64-35 66-35	
Parameter	Description		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCL	E						•		•		
t _{RC}	Read Cycle Time		15		20		25		35		ns
t _{AA}	Address to Data Valid			15		20		25		35	ns
t _{OHA}	Output Hold from Address Cl	hange	3		5		5		5		ns
t _{ACE}	CE LOW to Data Valid			15		20		25		35	ns
t _{DOE}	OE LOW to Data Valid	7C166		10		10		12		15	ns
t _{LZOE}	OE LOW to Low Z	7C166	3		3		3		3		ns
t _{HZOE}	OE HIGH to High Z	7C166		8		8		10		12	ns
t _{LZCE}	CE LOW to Low Z ^[6]		3		5		5		5		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]			8		8		10		15	ns
t _{PU}	CE LOW to Power-Up		0		0		0		0		ns
t _{PD}	CE HIGH to Power-Down			15		20		20		20	ns
WRITE CYC	LE ^[8]					•				•	
t _{WC}	Write Cycle Time		15		20		20		25		ns
t _{SCE}	CE LOW to Write End		12		15		20		25		ns
t _{AW}	Address Set-Up to Write End	l	12		15		20		25		ns
t _{HA}	Address Hold from Write End	ł	0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start		0		0		0		0		ns
t _{PWE}	WE Pulse Width		12		15		15		20		ns
t _{SD}	Data Set-Up to Write End		10		10		10		15		ns
t _{HD}	Data Hold from Write End		0		0		0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]		5		5		5		5		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]			7		7		7		10	ns

Notes:

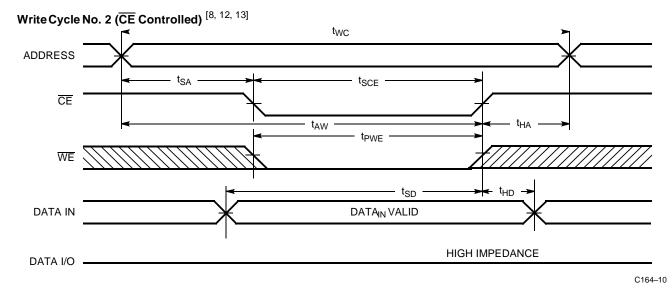
5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.


6.


7.


At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} for any given device. These parameters are guaranteed by design and not 100% tested. t_{HZCE} and t_{HZWE} are specified with $C_L = 5$ pF as in part (b) in AC Test Loads. Transition is measured ±500 mV from steady-state voltage. The internal write time of the memory is defined by the overlap of \overline{CE} LOW and \overline{WE} LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. 8.

Switching Waveforms

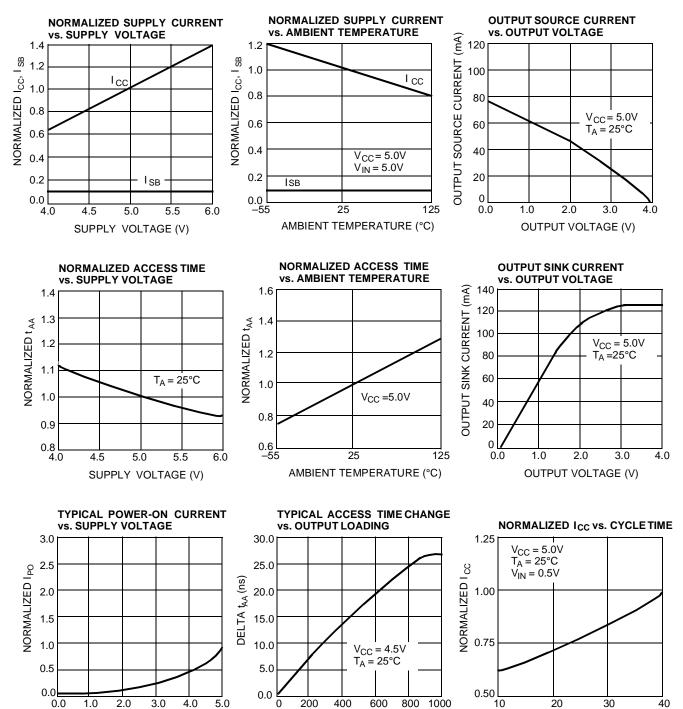


Notes:

^{9.} WE is HIGH for read cycle. 10. Device is continuously selected, $\overline{CE} = V_{IL}$. (CY7C166: $\overline{OE} = V_{IL}$ also). 11. Address valid prior to or coincident with \overline{CE} transition <u>L</u>OW. 12. CY7C166 only: Data I/O will be high-impedance if $\overline{OE} = V_{IH}$.

Switching Waveforms (continued)

Note:


13. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

CYCLE FREQUENCY (MHz)

Typical DC and AC Characteristics

SUPPLY VOLTAGE (V)

CAPACITANCE (pF)

CY7C164 Truth Table

CE	WE	Input/Output	Mode
Н	Х	High Z	Deselect/Power-Down
L	Н	Data Out	Read
L	L	Data In	Write

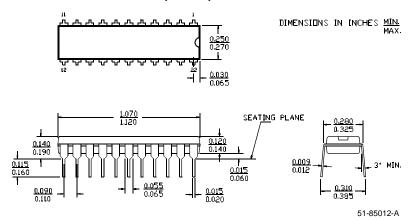
CY7C166 Truth Table

CE	WE	OE	Input/Output	Mode
Н	Х	Х	High Z	Deselect/Power-Down
L	Н	L	Data Out	Read
L	L	Н	Data In	Write
L	Н	Н	High Z	Write

Address Designators

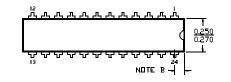
Address Name	Address Function	CY 7C164 Pin Number	CY7C166 Pin Number
A5	X3	1	1
A6	X4	2	2
A7	X5	3	3
A8	X6	4	4
A9	X7	5	5
A10	Y5	6	6
A11	Y4	7	7
A12	Y0	8	8
A13	Y1	9	9
A0	Y2	17	19
A1	Y3	18	20
A2	X0	19	21
A3	X1	20	22
A4	X2	21	23

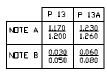
Ordering Information

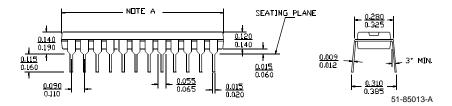

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C164-15PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-15VC	V13	24-Lead Molded SOJ	
20	CY7C164-20PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-20VC	V13	24-Lead Molded SOJ	
25	CY7C164-25PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-25VC	V13	24-Lead Molded SOJ	
35	CY7C164-35PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-35VC	V13	24-Lead Molded SOJ	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C166-15PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-15VC	V13	24-Lead Molded SOJ	
20	CY7C166-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-20VC	V13	24-Lead Molded SOJ	
25	CY7C166-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-25VC	V13	24-Lead Molded SOJ	
35	CY7C166-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-35VC	V13	24-Lead Molded SOJ	

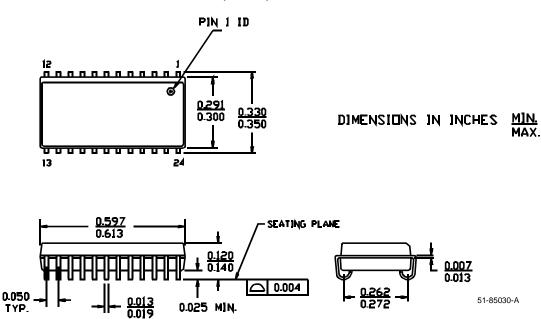
Document #: 38-00032-K




Package Diagrams



24-Lead (300-Mil) Molded DIP P13/P13A


DIMENSIONS IN INCHES MIN. MAX.

24-Lead (300-Mil) Molded SOJ V13

© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor against all charges.

22-Lead (300-Mil) Molded DIP P9